3.5.68 \(\int \frac {\cos (c+d x) \cot ^3(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx\) [468]

3.5.68.1 Optimal result
3.5.68.2 Mathematica [B] (verified)
3.5.68.3 Rubi [A] (verified)
3.5.68.4 Maple [A] (verified)
3.5.68.5 Fricas [B] (verification not implemented)
3.5.68.6 Sympy [F(-1)]
3.5.68.7 Maxima [F]
3.5.68.8 Giac [F(-2)]
3.5.68.9 Mupad [F(-1)]

3.5.68.1 Optimal result

Integrand size = 29, antiderivative size = 125 \[ \int \frac {\cos (c+d x) \cot ^3(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\frac {9 \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a+a \sin (c+d x)}}\right )}{4 \sqrt {a} d}-\frac {2 \cos (c+d x)}{d \sqrt {a+a \sin (c+d x)}}+\frac {\cot (c+d x)}{4 d \sqrt {a+a \sin (c+d x)}}-\frac {\cot (c+d x) \csc (c+d x)}{2 d \sqrt {a+a \sin (c+d x)}} \]

output
9/4*arctanh(cos(d*x+c)*a^(1/2)/(a+a*sin(d*x+c))^(1/2))/d/a^(1/2)-2*cos(d*x 
+c)/d/(a+a*sin(d*x+c))^(1/2)+1/4*cot(d*x+c)/d/(a+a*sin(d*x+c))^(1/2)-1/2*c 
ot(d*x+c)*csc(d*x+c)/d/(a+a*sin(d*x+c))^(1/2)
 
3.5.68.2 Mathematica [B] (verified)

Leaf count is larger than twice the leaf count of optimal. \(296\) vs. \(2(125)=250\).

Time = 2.91 (sec) , antiderivative size = 296, normalized size of antiderivative = 2.37 \[ \int \frac {\cos (c+d x) \cot ^3(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\frac {\left (\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right ) \left (-8-64 \cos \left (\frac {1}{2} (c+d x)\right )+4 \cot \left (\frac {1}{4} (c+d x)\right )-\csc ^2\left (\frac {1}{4} (c+d x)\right )+36 \log \left (1+\cos \left (\frac {1}{2} (c+d x)\right )-\sin \left (\frac {1}{2} (c+d x)\right )\right )-36 \log \left (1-\cos \left (\frac {1}{2} (c+d x)\right )+\sin \left (\frac {1}{2} (c+d x)\right )\right )+\sec ^2\left (\frac {1}{4} (c+d x)\right )+\frac {2}{\left (\cos \left (\frac {1}{4} (c+d x)\right )-\sin \left (\frac {1}{4} (c+d x)\right )\right )^2}-\frac {8 \sin \left (\frac {1}{4} (c+d x)\right )}{\cos \left (\frac {1}{4} (c+d x)\right )-\sin \left (\frac {1}{4} (c+d x)\right )}-\frac {2}{\left (\cos \left (\frac {1}{4} (c+d x)\right )+\sin \left (\frac {1}{4} (c+d x)\right )\right )^2}+\frac {8 \sin \left (\frac {1}{4} (c+d x)\right )}{\cos \left (\frac {1}{4} (c+d x)\right )+\sin \left (\frac {1}{4} (c+d x)\right )}+64 \sin \left (\frac {1}{2} (c+d x)\right )+4 \tan \left (\frac {1}{4} (c+d x)\right )\right )}{32 d \sqrt {a (1+\sin (c+d x))}} \]

input
Integrate[(Cos[c + d*x]*Cot[c + d*x]^3)/Sqrt[a + a*Sin[c + d*x]],x]
 
output
((Cos[(c + d*x)/2] + Sin[(c + d*x)/2])*(-8 - 64*Cos[(c + d*x)/2] + 4*Cot[( 
c + d*x)/4] - Csc[(c + d*x)/4]^2 + 36*Log[1 + Cos[(c + d*x)/2] - Sin[(c + 
d*x)/2]] - 36*Log[1 - Cos[(c + d*x)/2] + Sin[(c + d*x)/2]] + Sec[(c + d*x) 
/4]^2 + 2/(Cos[(c + d*x)/4] - Sin[(c + d*x)/4])^2 - (8*Sin[(c + d*x)/4])/( 
Cos[(c + d*x)/4] - Sin[(c + d*x)/4]) - 2/(Cos[(c + d*x)/4] + Sin[(c + d*x) 
/4])^2 + (8*Sin[(c + d*x)/4])/(Cos[(c + d*x)/4] + Sin[(c + d*x)/4]) + 64*S 
in[(c + d*x)/2] + 4*Tan[(c + d*x)/4]))/(32*d*Sqrt[a*(1 + Sin[c + d*x])])
 
3.5.68.3 Rubi [A] (verified)

Time = 1.43 (sec) , antiderivative size = 231, normalized size of antiderivative = 1.85, number of steps used = 20, number of rules used = 19, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.655, Rules used = {3042, 3360, 3042, 3230, 3042, 3128, 219, 3523, 27, 3042, 3463, 27, 3042, 3464, 3042, 3128, 219, 3252, 219}

Below are the steps used by Rubi to obtain the solution. The rule number used for the transformation is given above next to the arrow. The rules definitions used are listed below.

\(\displaystyle \int \frac {\cos (c+d x) \cot ^3(c+d x)}{\sqrt {a \sin (c+d x)+a}} \, dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\cos (c+d x)^4}{\sin (c+d x)^3 \sqrt {a \sin (c+d x)+a}}dx\)

\(\Big \downarrow \) 3360

\(\displaystyle \int \frac {\sin (c+d x)}{\sqrt {\sin (c+d x) a+a}}dx+\int \frac {\csc ^3(c+d x) \left (1-2 \sin ^2(c+d x)\right )}{\sqrt {\sin (c+d x) a+a}}dx\)

\(\Big \downarrow \) 3042

\(\displaystyle \int \frac {\sin (c+d x)}{\sqrt {\sin (c+d x) a+a}}dx+\int \frac {1-2 \sin (c+d x)^2}{\sin (c+d x)^3 \sqrt {\sin (c+d x) a+a}}dx\)

\(\Big \downarrow \) 3230

\(\displaystyle \int \frac {1-2 \sin (c+d x)^2}{\sin (c+d x)^3 \sqrt {\sin (c+d x) a+a}}dx-\int \frac {1}{\sqrt {\sin (c+d x) a+a}}dx-\frac {2 \cos (c+d x)}{d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\int \frac {1}{\sqrt {\sin (c+d x) a+a}}dx+\int \frac {1-2 \sin (c+d x)^2}{\sin (c+d x)^3 \sqrt {\sin (c+d x) a+a}}dx-\frac {2 \cos (c+d x)}{d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 3128

\(\displaystyle \frac {2 \int \frac {1}{2 a-\frac {a^2 \cos ^2(c+d x)}{\sin (c+d x) a+a}}d\frac {a \cos (c+d x)}{\sqrt {\sin (c+d x) a+a}}}{d}+\int \frac {1-2 \sin (c+d x)^2}{\sin (c+d x)^3 \sqrt {\sin (c+d x) a+a}}dx-\frac {2 \cos (c+d x)}{d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 219

\(\displaystyle \int \frac {1-2 \sin (c+d x)^2}{\sin (c+d x)^3 \sqrt {\sin (c+d x) a+a}}dx+\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \cos (c+d x)}{d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 3523

\(\displaystyle \frac {\int -\frac {\csc ^2(c+d x) (5 \sin (c+d x) a+a)}{2 \sqrt {\sin (c+d x) a+a}}dx}{2 a}+\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \cos (c+d x)}{d \sqrt {a \sin (c+d x)+a}}-\frac {\cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\int \frac {\csc ^2(c+d x) (5 \sin (c+d x) a+a)}{\sqrt {\sin (c+d x) a+a}}dx}{4 a}+\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \cos (c+d x)}{d \sqrt {a \sin (c+d x)+a}}-\frac {\cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\int \frac {5 \sin (c+d x) a+a}{\sin (c+d x)^2 \sqrt {\sin (c+d x) a+a}}dx}{4 a}+\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \cos (c+d x)}{d \sqrt {a \sin (c+d x)+a}}-\frac {\cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 3463

\(\displaystyle -\frac {\frac {\int \frac {\csc (c+d x) \left (\sin (c+d x) a^2+9 a^2\right )}{2 \sqrt {\sin (c+d x) a+a}}dx}{a}-\frac {a \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{4 a}+\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \cos (c+d x)}{d \sqrt {a \sin (c+d x)+a}}-\frac {\cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 27

\(\displaystyle -\frac {\frac {\int \frac {\csc (c+d x) \left (\sin (c+d x) a^2+9 a^2\right )}{\sqrt {\sin (c+d x) a+a}}dx}{2 a}-\frac {a \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{4 a}+\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \cos (c+d x)}{d \sqrt {a \sin (c+d x)+a}}-\frac {\cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {\int \frac {\sin (c+d x) a^2+9 a^2}{\sin (c+d x) \sqrt {\sin (c+d x) a+a}}dx}{2 a}-\frac {a \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{4 a}+\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \cos (c+d x)}{d \sqrt {a \sin (c+d x)+a}}-\frac {\cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 3464

\(\displaystyle -\frac {\frac {9 a \int \csc (c+d x) \sqrt {\sin (c+d x) a+a}dx-8 a^2 \int \frac {1}{\sqrt {\sin (c+d x) a+a}}dx}{2 a}-\frac {a \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{4 a}+\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \cos (c+d x)}{d \sqrt {a \sin (c+d x)+a}}-\frac {\cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 3042

\(\displaystyle -\frac {\frac {9 a \int \frac {\sqrt {\sin (c+d x) a+a}}{\sin (c+d x)}dx-8 a^2 \int \frac {1}{\sqrt {\sin (c+d x) a+a}}dx}{2 a}-\frac {a \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{4 a}+\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \cos (c+d x)}{d \sqrt {a \sin (c+d x)+a}}-\frac {\cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 3128

\(\displaystyle -\frac {\frac {\frac {16 a^2 \int \frac {1}{2 a-\frac {a^2 \cos ^2(c+d x)}{\sin (c+d x) a+a}}d\frac {a \cos (c+d x)}{\sqrt {\sin (c+d x) a+a}}}{d}+9 a \int \frac {\sqrt {\sin (c+d x) a+a}}{\sin (c+d x)}dx}{2 a}-\frac {a \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{4 a}+\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \cos (c+d x)}{d \sqrt {a \sin (c+d x)+a}}-\frac {\cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {\frac {9 a \int \frac {\sqrt {\sin (c+d x) a+a}}{\sin (c+d x)}dx+\frac {8 \sqrt {2} a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{d}}{2 a}-\frac {a \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{4 a}+\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \cos (c+d x)}{d \sqrt {a \sin (c+d x)+a}}-\frac {\cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 3252

\(\displaystyle -\frac {\frac {\frac {8 \sqrt {2} a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{d}-\frac {18 a^2 \int \frac {1}{a-\frac {a^2 \cos ^2(c+d x)}{\sin (c+d x) a+a}}d\frac {a \cos (c+d x)}{\sqrt {\sin (c+d x) a+a}}}{d}}{2 a}-\frac {a \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{4 a}+\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \cos (c+d x)}{d \sqrt {a \sin (c+d x)+a}}-\frac {\cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}\)

\(\Big \downarrow \) 219

\(\displaystyle -\frac {\frac {\frac {8 \sqrt {2} a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{d}-\frac {18 a^{3/2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {a \sin (c+d x)+a}}\right )}{d}}{2 a}-\frac {a \cot (c+d x)}{d \sqrt {a \sin (c+d x)+a}}}{4 a}+\frac {\sqrt {2} \text {arctanh}\left (\frac {\sqrt {a} \cos (c+d x)}{\sqrt {2} \sqrt {a \sin (c+d x)+a}}\right )}{\sqrt {a} d}-\frac {2 \cos (c+d x)}{d \sqrt {a \sin (c+d x)+a}}-\frac {\cot (c+d x) \csc (c+d x)}{2 d \sqrt {a \sin (c+d x)+a}}\)

input
Int[(Cos[c + d*x]*Cot[c + d*x]^3)/Sqrt[a + a*Sin[c + d*x]],x]
 
output
(Sqrt[2]*ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]]) 
])/(Sqrt[a]*d) - (2*Cos[c + d*x])/(d*Sqrt[a + a*Sin[c + d*x]]) - (Cot[c + 
d*x]*Csc[c + d*x])/(2*d*Sqrt[a + a*Sin[c + d*x]]) - (((-18*a^(3/2)*ArcTanh 
[(Sqrt[a]*Cos[c + d*x])/Sqrt[a + a*Sin[c + d*x]]])/d + (8*Sqrt[2]*a^(3/2)* 
ArcTanh[(Sqrt[a]*Cos[c + d*x])/(Sqrt[2]*Sqrt[a + a*Sin[c + d*x]])])/d)/(2* 
a) - (a*Cot[c + d*x])/(d*Sqrt[a + a*Sin[c + d*x]]))/(4*a)
 

3.5.68.3.1 Defintions of rubi rules used

rule 27
Int[(a_)*(Fx_), x_Symbol] :> Simp[a   Int[Fx, x], x] /; FreeQ[a, x] &&  !Ma 
tchQ[Fx, (b_)*(Gx_) /; FreeQ[b, x]]
 

rule 219
Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(1/(Rt[a, 2]*Rt[-b, 2]))* 
ArcTanh[Rt[-b, 2]*(x/Rt[a, 2])], x] /; FreeQ[{a, b}, x] && NegQ[a/b] && (Gt 
Q[a, 0] || LtQ[b, 0])
 

rule 3042
Int[u_, x_Symbol] :> Int[DeactivateTrig[u, x], x] /; FunctionOfTrigOfLinear 
Q[u, x]
 

rule 3128
Int[1/Sqrt[(a_) + (b_.)*sin[(c_.) + (d_.)*(x_)]], x_Symbol] :> Simp[-2/d 
Subst[Int[1/(2*a - x^2), x], x, b*(Cos[c + d*x]/Sqrt[a + b*Sin[c + d*x]])], 
 x] /; FreeQ[{a, b, c, d}, x] && EqQ[a^2 - b^2, 0]
 

rule 3230
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((c_.) + (d_.)*sin[(e_.) + 
(f_.)*(x_)]), x_Symbol] :> Simp[(-d)*Cos[e + f*x]*((a + b*Sin[e + f*x])^m/( 
f*(m + 1))), x] + Simp[(a*d*m + b*c*(m + 1))/(b*(m + 1))   Int[(a + b*Sin[e 
 + f*x])^m, x], x] /; FreeQ[{a, b, c, d, e, f, m}, x] && NeQ[b*c - a*d, 0] 
&& EqQ[a^2 - b^2, 0] &&  !LtQ[m, -2^(-1)]
 

rule 3252
Int[Sqrt[(a_) + (b_.)*sin[(e_.) + (f_.)*(x_)]]/((c_.) + (d_.)*sin[(e_.) + ( 
f_.)*(x_)]), x_Symbol] :> Simp[-2*(b/f)   Subst[Int[1/(b*c + a*d - d*x^2), 
x], x, b*(Cos[e + f*x]/Sqrt[a + b*Sin[e + f*x]])], x] /; FreeQ[{a, b, c, d, 
 e, f}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3360
Int[cos[(e_.) + (f_.)*(x_)]^4*((d_.)*sin[(e_.) + (f_.)*(x_)])^(n_)*((a_) + 
(b_.)*sin[(e_.) + (f_.)*(x_)])^(m_), x_Symbol] :> Simp[1/d^4   Int[(d*Sin[e 
 + f*x])^(n + 4)*(a + b*Sin[e + f*x])^m, x], x] + Int[(d*Sin[e + f*x])^n*(a 
 + b*Sin[e + f*x])^m*(1 - 2*Sin[e + f*x]^2), x] /; FreeQ[{a, b, d, e, f, m, 
 n}, x] && EqQ[a^2 - b^2, 0] &&  !IGtQ[m, 0]
 

rule 3463
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_)*((A_.) + (B_.)*sin[(e_.) + 
(f_.)*(x_)])*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])^(n_), x_Symbol] :> Sim 
p[(B*c - A*d)*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + f*x])^(n 
+ 1)/(f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*(n + 1)*(c^2 - d^2))   Int[(a 
 + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*(a*d*m + b*c*(n + 
1)) - B*(a*c*m + b*d*(n + 1)) + b*(B*c - A*d)*(m + n + 2)*Sin[e + f*x], x], 
 x], x] /; FreeQ[{a, b, c, d, e, f, A, B, m}, x] && NeQ[b*c - a*d, 0] && Eq 
Q[a^2 - b^2, 0] && NeQ[c^2 - d^2, 0] && LtQ[n, -1] && (IntegerQ[n] || EqQ[m 
 + 1/2, 0])
 

rule 3464
Int[((A_.) + (B_.)*sin[(e_.) + (f_.)*(x_)])/(Sqrt[(a_) + (b_.)*sin[(e_.) + 
(f_.)*(x_)]]*((c_.) + (d_.)*sin[(e_.) + (f_.)*(x_)])), x_Symbol] :> Simp[(A 
*b - a*B)/(b*c - a*d)   Int[1/Sqrt[a + b*Sin[e + f*x]], x], x] + Simp[(B*c 
- A*d)/(b*c - a*d)   Int[Sqrt[a + b*Sin[e + f*x]]/(c + d*Sin[e + f*x]), x], 
 x] /; FreeQ[{a, b, c, d, e, f, A, B}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - 
 b^2, 0] && NeQ[c^2 - d^2, 0]
 

rule 3523
Int[((a_) + (b_.)*sin[(e_.) + (f_.)*(x_)])^(m_.)*((c_.) + (d_.)*sin[(e_.) + 
 (f_.)*(x_)])^(n_)*((A_.) + (C_.)*sin[(e_.) + (f_.)*(x_)]^2), x_Symbol] :> 
Simp[(-(c^2*C + A*d^2))*Cos[e + f*x]*(a + b*Sin[e + f*x])^m*((c + d*Sin[e + 
 f*x])^(n + 1)/(d*f*(n + 1)*(c^2 - d^2))), x] + Simp[1/(b*d*(n + 1)*(c^2 - 
d^2))   Int[(a + b*Sin[e + f*x])^m*(c + d*Sin[e + f*x])^(n + 1)*Simp[A*d*(a 
*d*m + b*c*(n + 1)) + c*C*(a*c*m + b*d*(n + 1)) - b*(A*d^2*(m + n + 2) + C* 
(c^2*(m + 1) + d^2*(n + 1)))*Sin[e + f*x], x], x], x] /; FreeQ[{a, b, c, d, 
 e, f, A, C, m}, x] && NeQ[b*c - a*d, 0] && EqQ[a^2 - b^2, 0] && NeQ[c^2 - 
d^2, 0] &&  !LtQ[m, -2^(-1)] && (LtQ[n, -1] || EqQ[m + n + 2, 0])
 
3.5.68.4 Maple [A] (verified)

Time = 0.11 (sec) , antiderivative size = 150, normalized size of antiderivative = 1.20

method result size
default \(-\frac {\left (1+\sin \left (d x +c \right )\right ) \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, \left (8 \sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, a^{\frac {3}{2}} \left (\sin ^{2}\left (d x +c \right )\right )-9 \,\operatorname {arctanh}\left (\frac {\sqrt {-a \left (\sin \left (d x +c \right )-1\right )}}{\sqrt {a}}\right ) \left (\sin ^{2}\left (d x +c \right )\right ) a^{2}+\left (-a \left (\sin \left (d x +c \right )-1\right )\right )^{\frac {3}{2}} \sqrt {a}+\sqrt {-a \left (\sin \left (d x +c \right )-1\right )}\, a^{\frac {3}{2}}\right )}{4 a^{\frac {5}{2}} \sin \left (d x +c \right )^{2} \cos \left (d x +c \right ) \sqrt {a +a \sin \left (d x +c \right )}\, d}\) \(150\)

input
int(cos(d*x+c)^4*csc(d*x+c)^3/(a+a*sin(d*x+c))^(1/2),x,method=_RETURNVERBO 
SE)
 
output
-1/4*(1+sin(d*x+c))*(-a*(sin(d*x+c)-1))^(1/2)/a^(5/2)*(8*(-a*(sin(d*x+c)-1 
))^(1/2)*a^(3/2)*sin(d*x+c)^2-9*arctanh((-a*(sin(d*x+c)-1))^(1/2)/a^(1/2)) 
*sin(d*x+c)^2*a^2+(-a*(sin(d*x+c)-1))^(3/2)*a^(1/2)+(-a*(sin(d*x+c)-1))^(1 
/2)*a^(3/2))/sin(d*x+c)^2/cos(d*x+c)/(a+a*sin(d*x+c))^(1/2)/d
 
3.5.68.5 Fricas [B] (verification not implemented)

Leaf count of result is larger than twice the leaf count of optimal. 346 vs. \(2 (107) = 214\).

Time = 0.29 (sec) , antiderivative size = 346, normalized size of antiderivative = 2.77 \[ \int \frac {\cos (c+d x) \cot ^3(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\frac {9 \, {\left (\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1\right )} \sqrt {a} \log \left (\frac {a \cos \left (d x + c\right )^{3} - 7 \, a \cos \left (d x + c\right )^{2} + 4 \, {\left (\cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right ) + 3\right )} \sin \left (d x + c\right ) - 2 \, \cos \left (d x + c\right ) - 3\right )} \sqrt {a \sin \left (d x + c\right ) + a} \sqrt {a} - 9 \, a \cos \left (d x + c\right ) + {\left (a \cos \left (d x + c\right )^{2} + 8 \, a \cos \left (d x + c\right ) - a\right )} \sin \left (d x + c\right ) - a}{\cos \left (d x + c\right )^{3} + \cos \left (d x + c\right )^{2} + {\left (\cos \left (d x + c\right )^{2} - 1\right )} \sin \left (d x + c\right ) - \cos \left (d x + c\right ) - 1}\right ) - 4 \, {\left (8 \, \cos \left (d x + c\right )^{3} + 9 \, \cos \left (d x + c\right )^{2} - {\left (8 \, \cos \left (d x + c\right )^{2} - \cos \left (d x + c\right ) - 11\right )} \sin \left (d x + c\right ) - 10 \, \cos \left (d x + c\right ) - 11\right )} \sqrt {a \sin \left (d x + c\right ) + a}}{16 \, {\left (a d \cos \left (d x + c\right )^{3} + a d \cos \left (d x + c\right )^{2} - a d \cos \left (d x + c\right ) - a d + {\left (a d \cos \left (d x + c\right )^{2} - a d\right )} \sin \left (d x + c\right )\right )}} \]

input
integrate(cos(d*x+c)^4*csc(d*x+c)^3/(a+a*sin(d*x+c))^(1/2),x, algorithm="f 
ricas")
 
output
1/16*(9*(cos(d*x + c)^3 + cos(d*x + c)^2 + (cos(d*x + c)^2 - 1)*sin(d*x + 
c) - cos(d*x + c) - 1)*sqrt(a)*log((a*cos(d*x + c)^3 - 7*a*cos(d*x + c)^2 
+ 4*(cos(d*x + c)^2 + (cos(d*x + c) + 3)*sin(d*x + c) - 2*cos(d*x + c) - 3 
)*sqrt(a*sin(d*x + c) + a)*sqrt(a) - 9*a*cos(d*x + c) + (a*cos(d*x + c)^2 
+ 8*a*cos(d*x + c) - a)*sin(d*x + c) - a)/(cos(d*x + c)^3 + cos(d*x + c)^2 
 + (cos(d*x + c)^2 - 1)*sin(d*x + c) - cos(d*x + c) - 1)) - 4*(8*cos(d*x + 
 c)^3 + 9*cos(d*x + c)^2 - (8*cos(d*x + c)^2 - cos(d*x + c) - 11)*sin(d*x 
+ c) - 10*cos(d*x + c) - 11)*sqrt(a*sin(d*x + c) + a))/(a*d*cos(d*x + c)^3 
 + a*d*cos(d*x + c)^2 - a*d*cos(d*x + c) - a*d + (a*d*cos(d*x + c)^2 - a*d 
)*sin(d*x + c))
 
3.5.68.6 Sympy [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x) \cot ^3(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\text {Timed out} \]

input
integrate(cos(d*x+c)**4*csc(d*x+c)**3/(a+a*sin(d*x+c))**(1/2),x)
 
output
Timed out
 
3.5.68.7 Maxima [F]

\[ \int \frac {\cos (c+d x) \cot ^3(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\int { \frac {\cos \left (d x + c\right )^{4} \csc \left (d x + c\right )^{3}}{\sqrt {a \sin \left (d x + c\right ) + a}} \,d x } \]

input
integrate(cos(d*x+c)^4*csc(d*x+c)^3/(a+a*sin(d*x+c))^(1/2),x, algorithm="m 
axima")
 
output
integrate(cos(d*x + c)^4*csc(d*x + c)^3/sqrt(a*sin(d*x + c) + a), x)
 
3.5.68.8 Giac [F(-2)]

Exception generated. \[ \int \frac {\cos (c+d x) \cot ^3(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\text {Exception raised: TypeError} \]

input
integrate(cos(d*x+c)^4*csc(d*x+c)^3/(a+a*sin(d*x+c))^(1/2),x, algorithm="g 
iac")
 
output
Exception raised: TypeError >> an error occurred running a Giac command:IN 
PUT:sage2:=int(sage0,sageVARx):;OUTPUT:Unable to divide, perhaps due to ro 
unding error%%%{%%{[%%%{%%{[37748736,0]:[1,0,-2]%%},[1]%%%},0]:[1,0,%%%{-1 
,[1]%%%}]
 
3.5.68.9 Mupad [F(-1)]

Timed out. \[ \int \frac {\cos (c+d x) \cot ^3(c+d x)}{\sqrt {a+a \sin (c+d x)}} \, dx=\int \frac {{\cos \left (c+d\,x\right )}^4}{{\sin \left (c+d\,x\right )}^3\,\sqrt {a+a\,\sin \left (c+d\,x\right )}} \,d x \]

input
int(cos(c + d*x)^4/(sin(c + d*x)^3*(a + a*sin(c + d*x))^(1/2)),x)
 
output
int(cos(c + d*x)^4/(sin(c + d*x)^3*(a + a*sin(c + d*x))^(1/2)), x)